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Entropy approach through graph theory for studying the
degree of order in one-dimensional distributions of objects
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Département de Physique des Interactions Photons-Matière, case EC1, Faculté des Sciences et
Techniques de St Jérôme, 13397 Marseille Cedex 20, France

Received 18 September 1995

Abstract. Graph theory, through the minimal spanning tree (MST), and information theory,
through the concept of entropy, are used to define a new parameterγ which quantitatively
characterizes the degree of order (or disorder) in1D sets of points. Theoretical calculations and
results obtained from various computer-simulated distributions of points are compared. For well-
chosen conditions which are specified, a good agreement is noted. Finally, a method which is
particularly easy to implement is proposed to evaluate the parameterγ for any real or simulated
1D distribution of points.

1. Introduction

In a previous paper [1] a new approach was developed to study order and disorder in two-
dimensional distributions of particles. This approach was based on a graph, the minimal
spanning tree (MST), constructed from the set of points which locate the positions of particles.
Recall that anMST is a tree which contains all the nodes and where the sum of the edge
weights is minimal. Depending on the starting point, there may be more than oneMST for a
given set of points, but all theMSTs have the same edge-length histogram (the edge length
considered here is the Euclidean distance). It follows that statistical information deduced
from this histogram, such as the average edge lengthm and the standard deviationσ , may
be used as characteristics for the distribution to be studied. The use of a diagram involving
bothm andσ , both normalized according to an appropriate process [2], makes it possible to
compare different distributions by taking a simple reading of the(m, σ) plane on which well-
characterized distributions (such as perfectly ordered or random) were previously located.
The method turned out to be successful in various situations such as the study of biological
systems [3–7], the quantization of thin film growth [8, 9], the percolation phenomenon [10],
the statistical analysis of disorder in2D cellular arrays in directional solidification [11], the
determination of the nature of disorder in liquid and glassy solids [12], etc.

Despite its advantages, namely adaptability and easiness, the method is restrictive in
that it does not permit the quantitative determination of the degree of order in a distribution.
The present paper is devoted to such a determination, with a view to making our previous
analysis more informative and accurate.

The basic idea is to apply information theory to graphs constructed from sets of points.
In this approach, graphs are considered as a source of information through the distribution
of edge lengths and the angles that the edges make with a given axis. This has led us to
define an entropy function from those parameters whose values may be used to characterize
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the degree of order for a set of points.1D and 2D sets of points have been considered
separately. The present work is devoted to the study of the1D distributions of points. After
reviewing the basic definitions related to information theory and the entropy of statistical
mechanics, we discuss their possible application to anMST graph constructed from a set of
points. Within this framework an entropy function relative toMST edge-length distribution
is proposed and its validity is justified. Then a parameter involving the previously defined
entropy function is proposed to quantize the degree of order of any1D distribution of
points. The results obtained from simulated random and non-random distributions of points
are compared with those provided by theoretical calculations.

2. Information and entropy

Let us consider a system (or source of information) which can be expressed by means
of a finite number of eventsei (i = 1, 2, . . . , M) with the probabilitiesPi such as∑M

i=1 Pi = 1. Information theory makes it possible to measure the uncertainty associated
with the message source. According to Shannon, the uncertainty for the distribution
{Pi} = {Pi; i = 1, 2, . . . , M}, is given by

I ({Pi}) = −λ

M∑
i=1

Pi ln[Pi ] (1)

whereλ is a positive constant.
In our case, any1D distribution of points may be characterized by means of the indexed

edge lengths of anMST constructed from the set of points, where indices indicate how the
edges are connected to each other. If the distribution consists of equidistant points, it is
enough to know the edge-length value. But for all the other cases, not knowing the indices
leads to a loss of information about theMST and therefore about the distribution of points.

Within the framework of information theory this loss of information can be evaluated
from (1) in which the probabilitiesPi characterize eventsei defined as follows. Assume
that edge lengths̀ can take any value between two limitsα and β(α < β), and divide
the [α, β] interval into M segments of equal lengthδ` = (β − α)/M. The evenei is then
defined as follows: the edge length` belongs to the interval [αi, βi ], where

αi = α + (i − 1)
(β − α)

M
and βi = β + i

(β − α)

M
.

From the point of view of statistical mechanics, the set of indexed edge lengths of the
MST constructed from the distribution of points may be used to define a so-called microstate.
Knowing only the edge lengths makes it possible to construct severalMSTs, sayQ, each
being associated with a microstate. In this context a state, which consists of the set of all
possible microstates, may be characterized by theMST’s edge-length distribution. The lack
of information is measured by the statistical entropy

S[Q] = ln[Q] .

For a finite set of eventsei with the discrete distribution{Pi}, the Stirling formula leads to
an expression for the statistical entropyS{Pi} similar to (1).

For a continuous probability distribution9(`) subject to the constraint∫ β

α

9(`) d` = 1
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the statistical entropy is defined by [13]

S = −λ

∫ β

α

9(`) ln[9(`)δ0`] d`

whereδ0` is a minimal interval corresponding to the best possible accuracy when measuring
` and such that the variations of9(`) on this interval are negligible [13].

3. Entropy function for MST edge-length distribution

The previous considerations enable us to define an entropy functionS` related to the edge-
length distribution of anMST constructed from a set of points:

S` = −
∫ ∞

0
9(`) ln[9(`)δ0`] d` (2)

where9(`) is subject to the constraint∫ ∞

0
9(`) d` = 1 .

The discrete counterpart ofS` is given by

Sd
` = −

M∑
i=1

Pi ln[Pi ] (3)

wherePi is the probability that an edge length` belongs to the class ‘i’, namelyPi = Ni/Nt,
Ni is the number of edge lengths related to theith class andNt is the total number of edge
lengths (Nt = N − 1 for the MST). The number of class intervalsM is chosen such that
δ0` = L/M, whereL is the length of the interval on which the points are distributed.S`

may be used for characterizing the degree of order or disorder in any set of points.
Let us first consider a1D distribution of N randomly distributed points on an axis of

given lengthL and the constraints
(i) normalization condition for9(`)∫ ∞

0
9(`) d` = 1

(ii) condition for the total length of the graph(N − 1 ∼ N)

N

∫ ∞

0
`9(`) d` = L .

According to the Lagrange multiplier method we define

S∗ = −
∫ ∞

0
9(`) ln[9(`)δ0`] d` + b

[
1 −

∫ ∞

0
9(`) d`

]
+ c

[
L − N

∫ ∞

0
`9(`) d`

]
.

The condition

∂S∗

∂9(`)
= 0

leads to

9(`) = A exp[−β`] . (4)
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We now consider theMST constructed from the previousN points. The probability of having
an edge of length̀ in such a graph is the same as the probabilityP(0) of having no point
in intervals of length̀ . The Poisson distribution provides

P(0) = exp[−µ] with µ = ρ` and ρ = N

L
.

P (0) may also be expressed as

P(0) = 1 −
∫ `

0
9(x) dx .

So we deduce that

9(`) = ρ exp[−ρ`] (5)

which is similar to relation (4).
This result shows that the entropy functionS` defined by (2) is maximal for a set of

randomly distributed points. Moreover,S` tends to zero when all the edges have the same
length`0 ± δ0`/2. Indeed in this case9(`) may be defined as

9(`) =


1

δ0`
if `0 − δ0`

2
< ` < `0 + δ0`

2

0 if |` − `0| >
δ0`

2
.

So that

S` = −
∫ `0+δ0`/2

`0−δ0`/2

1

δ0`
ln

[
δ0`

δ0`

]
d` = 0 .

This situation occurs either when all the points form a regular network or are concentrated
on one point to constitute what can be termed as a perfect cluster. These two situations are
related to repulsive and attractive interactions between the points, respectively.

Moreover, note that the probability density9(`) may be written as

9(`) = ρφρ(`) .

ThenS` becomes

S` = ln

[
1

ρδ0`

]
−

∫ ∞

0
ρφρ(`) ln[φρ(`)] d` . (6)

When changing unit length (scale change),ρ and δ0` vary in opposite ways, so thatρδ0`

keeps a constant value. Given thatS` has to be invariant for such a change, it ensures that
the term

F = −
∫ ∞

0
ρφρ(`) ln[φρ(`)] d` (7)

does not depend on the point densityρ but only on the way the points are scattered. For a
random arrangement of points

φρ(`) = exp[−β`] so F = 1 .

When all the edges have the same length`0 ± δ0`/2 we have

F = −
∫ `0+δ0`/2

`0−δ0`/2

1

δ0`
ln

[
1

ρδ0`

]
d` = − ln

[
1

ρδ0`

]
.
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Therefore, for a givenρ, the minimalF value depends onδ0`. In particularF → −∞ for
δ0` → 0. This limit corresponds to a regular1D mosaic for whichMST edge lengths are
known with infinite accuracy.

For convenience, the way the points are scattered will be characterized by using a
parameterγ defined as

γ = 1 − F . (8)

Thusγ = 0 for a random arrangement of points andγ → ∞ for a regular1D mosaic. The
behaviour ofF or γ for intermediate situations is studied in the following section.

4. Study of simulated distributions of points

4.1. Experimental procedure

The points have been distributed along an axis of lengthL by means of two procedures:
(i) Random distributions have been simulated by using the linear congruent Monte Carlo

method [14].
(ii) Other distributions have been generated from a basic distribution made up ofN

points located at regular intervalsa = L/N (regular1D mosaic). This arrangement may be
randomized by giving each point a new position deduced from its previous position using
a Gaussian distribution with a standard deviation ofω and a zero mean. For aω value of
the order of thea value, the uniform random distribution is reached [1]. Thus by usingω

values from zero toω > a, a set of various distributions can be generated.
For each distribution, the graph connecting all the points in the shortest way or1D

MST is constructed, and from the corresponding edge-length histogram an estimate of the
statistical entropyS` is obtained by means of (3).

4.2. Results related to random distributions of points

By using the expression of9(`) given by (5) in (2), we obtain, after performing integration:

S`,r = ln

[
e

ρδ0`

]
where the subscript r stands for random, or

S`,r = ln

[
eM

N

]
(9)

by takingδ0` = L/M andρ = N/L into account.
Ten distributions ofN (N = 2000 andN = 6000, respectively) randomly scattered

points have been generated on a segment of lengthL = 1. For each distribution the
statistical entropy has been estimated by means of (3) for differentM values such as
M/N & 1/e. In figure 1(a) we have reported both〈Sd

`,r〉—the arithmetic averages related
to the ten distributions (N = 2000 andN = 6000)—andS`,r versusM/N . It can be noted
that experimental results do not depend explicitly on the values ofN : they only depend on
M/N as expected from (9). In the same way we obtain a good agreement betweenS`,r and
〈Sd

`,r〉 except for small (figure 1(b)) and large (figure 1(c)) values ofM/N .
In the first case, the discrepancy may be explained by the fact that small values ofM

(a fortiori values ofM/N ) correspond to large values ofδ0`; then the variations of9(`)

on theseδ0` intervals can no longer be considered negligible, as is the case when defining
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Figure 1. Entropy S versusM/N for randomly distributed points. (a) Full squares:〈Sd
`,r〉

arithmetic mean of results obtained by using (3) for ten random distributions ofN = 2000
points; open squares: same as full squares forN = 6000. Full curve:S`,r given by (9); dotted
curve: (Sd

`,r)th2 given by (11). (b) Results for small values ofM/N plotted on an expanded
M/N scale: full squares, open squares and full curve same as (a); chain curve(Sd

`,r)th1 given
by (10). (c) Results for large values ofM/N plotted on an expanded entropy scale: full curve,
full squares and open squares same as (a); dotted curve and broken curve(Sd

`,r)th2 given by (11)
for N = 2000 andN = 6000, respectively.

the entropy functionS`. So the probability that an edge length` belongs to the class ‘i’
may be written as

pi =
∫ iδ0`

(i−1)δ0`

9(`) d` = exp[−ρ(i − 1)δ0`] − exp[−ρiδ0`]

By substituting this expression ofpi on the right-hand side of (3), the limitN → ∞ leads
to the theoretical expression forSd

`,r:

(Sd
`,r)th1 = N

M

exp
[−N/M

]
1 − exp

[−N/M
] − ln

[
1 − exp

[
− N

M

]]
. (10)

It can be seen from figure 1(b) that (10) fits the experimental results well for small values
of M/N . As values ofM/N increase,(Sd

`,r)th1 quickly approachesS`,r. For example, a
difference of less than 1% is obtained as soon asM/N > 1.75. Indeed ln[eM/N ] is the
first-order approximation inM/N of the right-hand side of (10).

Figures 1(a) and (c) show that beyond a given value ofM/N , 〈Sd
`,r〉 deviates fromS`,r.

The discrepancy takes place for larger values ofM/N asN is large and increases regularly
with M/N . This behaviour is due to the fact that whenM becomes too large compared
to N , there are no longer enough data in class intervals and the statistics are biased.
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Actually the set of experimental results may be recovered theoretically. Indeed, as the
edge-length events are independent, it is possible to compute the probability thatk events
belong to theith interval from the binomial distribution, i.e.

5(Ni = k) =
(

Nt

k

)
pk

i (1 − pi)
Nt−k

whereNt is the number of events and

pi =
∫ iδ0`

(i−1)δ0`

9(`) d` .

In this case it follows from (3) that the statistical entropy may be written as

(Sd
`,r)th2 = −

M∑
i=1

Nt∑
k=0

5(Ni = k)
k

Nt
ln

[
k

Nt

]
. (11)

(Sd
`,r )th2 values computed forN = 2000 andN = 6000 are reported in figure 1(a) and (c).

A very good agreement with〈Sd
`,r〉 (better than 0.05%) is observed.

We notice that(Sd
`,r)th2 represents the expected value of the experimental statistical

entropy while(Sd
`,r)th1 may be considered as the entropy related to the expected value of

the different random variables associated withPi = Ni/Nt.
The values of(Sd

`,r)th1, (Sd
`,r)th2, Sd

`,r andS`,r are in good agreement for values ofM/N

such that

A 6 M

N
6 B(N)

whereA and B are values ofM/N which depend on the accuracy chosen forSd
`,r when

compared withS`,r. B is dependent onN while A is not.

4.3. Results related to non-random arrangements of points

Such distributions have been generated on a segment of lengthL = 1, from the procedure
described in section 4.1. For the sake of convenience we noteω = αa whereα is a positive
dimensionless variable anda = L/N . For a given value ofM/N , it is observed, as far as
α 6 1, that the statistical entropy computed by means of (3), and henceforth denotedSd

`,α,
is always less than the one corresponding to the random distributions of points.

Figure 2(a) shows, for different values ofα, the arithmetic average values〈Sd
`,α〉

calculated over four distributions and for two populations (N = 2000 andN = 6000).
Computations have been made by using anM/N value of 25 in (3). It can be noted
that Sd

`,α increases regularly withα and approaches theS`,r value related to a random
distribution, i.e. ln[eM/N ], when α > 1. Notice also thatSd

`,α does not depend explicitly
on N . It depends only on value ofM/N . The behaviour ofSd

`,α with α may be justified
as follows.

Let A and B be two points on thex-axis such asAB = ai, wherei = the unit vector
of the x axis, and A′ and B′ the new positions of the previous points after randomization
such thatA′B′ = ui whereu may be> 0, < 0 or = 0. Figure 3 illustrates two of several
situations that may occur. Denotex1 andx2 the components ofAA′ andBB′, respectively,
and putz

z = u − a = x2 − x1 .
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Figure 2. EntropyS versusα for non-random distributions of points. (a) Full squares:〈Sd
`,α〉

arithmetic mean of results obtained by using (3) for four distributions ofN = 2000 points; open
squares: same as full squares forN = 6000; full curve:S`,α given by (13); dotted curve:S`,α

given by (15); broken curve:S`,α given by (16). (b) Initial portion of S plotted on an expanded
α scale and an expanded entropy scale; full squares, open squares and full curve same as (a).

Figure 3. Two of various situations that may occur when delocalizing two points A and B of a
regular1D mosaic. A′ and B′ are the new positions of the previous points after randomization.

x1 andx2 are the shift related to point A and point B, respectively, and may be associated
with two random variablesX1 and X2. They are characterized by a Gaussian density
probability

φω(x) = 1

ω
√

2π
exp

[
− x2

2ω2

]
wherex stands forx1 or x2.

Given thatX1 and X2 are independent, the density probability related to the random
variableZ = X2 − X1 is then given by [15]:

φω(z) = 1

2ω
√

π
exp

[
− z2

4ω2

]
.

The variable changez = u − a and the fact that edge lengths` are such thatl = u if u > 0
and` = −u if u < 0, lead to

9ω(`) = 1

2ω
√

π

(
exp

[
− (` + a)2

4ω2

]
+ exp

[
− (` − a)2

4ω2

])
(12)

which represents the edge-length distribution function when a perturbation with a standard
deviation ofω is applied to the basic distribution.
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Inserting (12) into (2) provides

S`,α = ln

[
2
√

eπ
M

N
α

]
+ T (ρ, α) (13)

with

T (ρ, α) = − ρ

2α
√

π

∫ ∞

−∞
exp

[
− (ρu − 1)2

4α2

]
ln

[
1 + exp

[
−ρu

α2

]]
du .

The full curve in figure 2(a) representsS`,α given by (13). A good fit (< 1%) between
experimental and theoretical results is obtained for 0.08 . α . 0.42 approximately. Beyond
this range (figures 2(a) and (b)) discrepancies appear. Actually whenα is small enough, so
that randomization does not much modify the position of the two points considered in the
basic distribution, the edge-length distribution function is merely

9α(`) = ρ

2α
√

π
exp

[
−ρ2(` − a)2

4α2

]
. (14)

Then

S`,α = ln

[
2
√

eπ
M

N
α

]
. (15)

Equation (15) and experimental results are in good agreement (better than 1%) for
0.08 . α . 0.31. In thisα rangeT (ρ, α) is negligible. The discrepancy between theory
and experiment, whenα . 0.08, results from the fact that the chosen value ofM/N (here
25), is no longer large enough. Forα & 0.42 the explanation may be the following. The
model used to establish (13) involves only two neighbouring points in the basic distribution.
Whenα becomes relatively high, other points than those considered in the model come in
between the two initial points, so that the Euclidean distance between these does not define
an MST edge length any longer. In other words, equation (12) does not represent the real
edge-length distribution function. It follows that (13) is not very adequate to describe the
experimental results. Actually more than two points in the basic distribution should have
been considered. But in this case, the formulation of the problem rapidly becomes very
complicated. However, it is possible to obtain a good fit forα & 0.42 by weightingT (ρ, α).
We found that the expression

S`,α = ln

[
2
√

eπ
M

N
α

]
+ 1.7

√
αT (ρ, α) (16)

fitted the experimental results quite well (see figure 2(a)).
From equations (9), (13), (15) and (16), it can be deduced that the experimental entropy

Sd
` (Sd

` now refers toSd
`,r andSd

`,α, both of which are evaluated from (3) by using adequate
values ofM/N ) is well described by the general expression

Sd
` = ln

[
M

N

]
+ G(ρ, α) . (17)

The determination of the adequate values ofM/N is discussed in section 4.5.

4.4. Parameter of order

The computation ofG(ρ, α) from (17) for various simulated arrangements of points, shows
that the termG does not depend onρ but only onα, i.e. on the way the points are distributed.
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Figure 4. Parameterγ versusα for various simulated
distributions of points. γ has been evaluated by using
adequate values ofM/N for each distribution following
the procedure proposed at the end of section 4.5. Full
squares: various simulated distributions withN = 2000;
open squares: same as full squares forN = 6000.

This result is in good agreement with the theoretical prediction given by (6) which may
also be written as

S` = ln

[
M

N

]
+ F .

Moreover, we find thatG is a monotonically increasing function ofα, that may therefore be
used to quantitatively characterize order (or disorder) in the distributions of points. Actually
it seems more convenient, for such a characterization, to use the parameter of orderγ defined
by (8). Figure 4 showsγ = 1 − G(α) for different distributions of points. Also note that

γ = ln

[
eM

N

]
− Sd

` = S`,r − Sd
` . (18)

Thus, given a distribution ofN points, γ measures the difference between the entropy
function related toN randomly scattered points and the entropy function related to the
actual distribution ofN points.

4.5. Determination of adequate value ofM when evaluating entropy functionSd
`

The purpose is to determine theM value so that the differenceD = S`−Sd
` will be minimal.

Let us first consider a random distribution ofN points. The standard deviation related to
edge lengths and deduced from (5) isσ = 1/N by takingL = 1. Theoretical values ofD
for such a distribution are given byDth = S`,r − (Sd

`,r)th2. The variations ofDth, versusMσ ,
for N = 2000 are shown in figure 5. On the same figure are also reported some values of
Dr = S`,r − Sd

`,r related to a simulated random distribution(N = 2000), and some values
of Dα = S`,α − Sd

`,α corresponding to a weakly perturbed mosaic(N = 2000) characterized
by the edge-length distribution function9α(`) (equation (14)). These results show that, for
a givenN , D does not depend on the way the points are scattered, and thatD is well fitted
by Dth. The adequate value ofMσ or M is obtained forDth = 0. It is then possible to
compute the adequate value ofMσ for variousN (figure 6) and in particular to put forward
the following analytical approach:

c0 + c1

N
+ c2N + c3N

2 + c4N ln[N ] for N ∈ (100, 10 000) (19)

with c0 = 1.184,c1 = −29.4, c2 = 3.463× 10−3, c3 = 2.216× 10−8, c4 = −3.648× 10−4.
Eventually, the practical procedure to evaluate the parameter of orderγ related to an

arrangement ofN points scattered along a segment of lengthL is as follows:
(i) Construct theMST from the set of points and determine the edge lengths. Divide the

edge-length values byL in order to reduce the study to a segment of lengthL = 1.



Degree of order in1D distributions of objects 2979

Figure 5. D = S` − Sd
` , versusMσ , for distributions

of N = 2000 points. Full curve:Dth = S`,r − (Sd
`,r)th2.

Full squares: Dr = S`,r − Sd
`,r for a simulated random

distribution; open squares:Dα = S`,α − Sd
`,α for a mosaic

perturbed withα = 0.2. For both full and open squares the
value ofσ taken into account is the real standard deviation
deduced from the simulated distributions.

Figure 6. Adequate values ofMσ versusN . Full circles:
computed adequate values ofMσ ; full curve: analytical
approach given by (19).

(ii) Compute the real standard deviationσ related to the edge lengths.
(iii) Use the adequate value ofM deduced from (19) to computeSd

` by means of (3).
(iv) Lastly deduceγ from (18).

5. Conclusion

In this paper, we have proposed a new parameterγ for quantizing the degree of order in
a 1D distributions of points. This parameter involves an entropy function related to the edge
lengths of theMST constructed from the set of points. Theoretical predictions have been
confirmed by investigating the simulated distributions of points, i.e. both random and non-
random distributions obtained by perturbing a regular1D mosaic using a Gaussian process.
Besides this, a method which is particularly easy to implement and computationally efficient
has been proposed for evaluatingγ in all situations, i.e. simulated distributions as well as
distributions resulting from experiments. This parameter should turn out to be very useful
in various fields of physics, biology and medicine. Eventually this study may be extended
to the2D distributions of points. Such an approach is being developed.
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