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Abstract. Graph theory, through the minimal spanning treesT), and information theory,
through the concept of entropy, are used to define a new parametdrich quantitatively
characterizes the degree of order (or disordenpirsets of points. Theoretical calculations and
results obtained from various computer-simulated distributions of points are compared. For well-
chosen conditions which are specified, a good agreement is noted. Finally, a method which is
particularly easy to implement is proposed to evaluate the paramdterany real or simulated

1D distribution of points.

1. Introduction

In a previous paper [1] a new approach was developed to study order and disorder in two-
dimensional distributions of particles. This approach was based on a graph, the minimal
spanning treeMsT), constructed from the set of points which locate the positions of particles.
Recall that armsT is a tree which contains all the nodes and where the sum of the edge
weights is minimal. Depending on the starting point, there may be more thamsnier a

given set of points, but all theisTs have the same edge-length histogram (the edge length
considered here is the Euclidean distance). It follows that statistical information deduced
from this histogram, such as the average edge lemg#nd the standard deviatien may

be used as characteristics for the distribution to be studied. The use of a diagram involving
bothm ando, both normalized according to an appropriate process [2], makes it possible to
compare different distributions by taking a simple reading of(theo) plane on which well-
characterized distributions (such as perfectly ordered or random) were previously located.
The method turned out to be successful in various situations such as the study of biological
systems [3—7], the quantization of thin film growth [8, 9], the percolation phenomenon [10],
the statistical analysis of disorder 2o cellular arrays in directional solidification [11], the
determination of the nature of disorder in liquid and glassy solids [12], etc.

Despite its advantages, namely adaptability and easiness, the method is restrictive in
that it does not permit the quantitative determination of the degree of order in a distribution.
The present paper is devoted to such a determination, with a view to making our previous
analysis more informative and accurate.

The basic idea is to apply information theory to graphs constructed from sets of points.
In this approach, graphs are considered as a source of information through the distribution
of edge lengths and the angles that the edges make with a given axis. This has led us to
define an entropy function from those parameters whose values may be used to characterize
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the degree of order for a set of pointsD and 2D sets of points have been considered
separately. The present work is devoted to the study ofhdistributions of points. After
reviewing the basic definitions related to information theory and the entropy of statistical
mechanics, we discuss their possible application tmsngraph constructed from a set of
points. Within this framework an entropy function relativemMeT edge-length distribution

is proposed and its validity is justified. Then a parameter involving the previously defined
entropy function is proposed to quantize the degree of order ofiangistribution of
points. The results obtained from simulated random and non-random distributions of points
are compared with those provided by theoretical calculations.

2. Information and entropy

Let us consider a system (or source of information) which can be expressed by means
of a finite number of eventg; (i = 1,2,..., M) with the probabilitiesP; such as

Zf‘il P, = 1. Information theory makes it possible to measure the uncertainty associated
with the message source. According to Shannon, the uncertainty for the distribution
{PYy={P;i=12,..., M}, is given by

M
I({P}) = =1 P In[P] (1)
i=1

wherea is a positive constant.

In our case, anyD distribution of points may be characterized by means of the indexed
edge lengths of amsT constructed from the set of points, where indices indicate how the
edges are connected to each other. If the distribution consists of equidistant points, it is
enough to know the edge-length value. But for all the other cases, not knowing the indices
leads to a loss of information about tlsT and therefore about the distribution of points.

Within the framework of information theory this loss of information can be evaluated
from (1) in which the probabilities?; characterize events defined as follows. Assume
that edge lengthg can take any value between two limisand 8(« < ), and divide
the [, 8] interval into M segments of equal lengt? = (8 — «)/M. The everg; is then
defined as follows: the edge lengthbelongs to the intervak{, 8;], where

(B —a) B—-—a
M

i = —1 d P = ] .
o =o+ (i ) an Bi=B8+i i

From the point of view of statistical mechanics, the set of indexed edge lengths of the
MST constructed from the distribution of points may be used to define a so-called microstate.
Knowing only the edge lengths makes it possible to construct semsmd, sayQ, each
being associated with a microstate. In this context a state, which consists of the set of all
possible microstates, may be characterized bymsigs edge-length distribution. The lack
of information is measured by the statistical entropy

S[e] =In[Q].

For a finite set of events with the discrete distributiofiP;}, the Stirling formula leads to
an expression for the statistical entrofyP;} similar to (1).
For a continuous probability distributiod (¢) subject to the constraint

B
/ vde=1

a
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the statistical entropy is defined by [13]
B
S=- / W (L) In[W(£)d0] de

wheredof is a minimal interval corresponding to the best possible accuracy when measuring
¢ and such that the variations @f(¢) on this interval are negligible [13].

3. Entropy function for MST edge-length distribution

The previous considerations enable us to define an entropy fun§ticeiated to the edge-
length distribution of ammsT constructed from a set of points:

Sy =— foo W(0) In[W (£)50¢] de @)
0

whereW (¢) is subject to the constraint

/ v)yde=1.
0

The discrete counterpart 6§ is given by

M
S{ ==> " PIn[P)] 3
i=1

whereP; is the probability that an edge lengthbelongs to the clasg’; namely P, = N; /Ny,
N; is the number of edge lengths related to ttieclass andV; is the total number of edge
lengths i = N — 1 for the MsT). The number of class interval¥ is chosen such that
dof = L/M, whereL is the length of the interval on which the points are distribut&d.
may be used for characterizing the degree of order or disorder in any set of points.
Let us first consider abp distribution of N randomly distributed points on an axis of
given lengthL and the constraints
(i) normalization condition fon (¢)

/0 ” w)de =1

(ii) condition for the total length of the graptiv — 1 ~ N)
N/OOOE\IJ(E)dZ =1L.

According to the Lagrange multiplier method we define

§* = — foo W (0) IN[W(£)8e¢] de +b|:1— /oo W (e) dﬁ} + C|:L - Nfoom/(z) de} .
0 0

0
The condition
st
W)

leads to

W(0) = Aexp[-B1] . (4)
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We now consider th®sT constructed from the previoug points. The probability of having
an edge of lengtht in such a graph is the same as the probab#it®) of having no point
in intervals of length¢. The Poisson distribution provides

N
P(0) = exp[—u] with u=p¢ and p= "

P(0) may also be expressed as

14
P(O):l—/ W(x)dx.
0
So we deduce that

W(¢) = p expl—pl] (5)

which is similar to relation (4).

This result shows that the entropy functidp defined by (2) is maximal for a set of
randomly distributed points. Moreoves, tends to zero when all the edges have the same
length¢g + 5p¢/2. Indeed in this cas® (¢) may be defined as

1 . 8ol 8ol
50 if Eo—7<€<£o—}—7
viy=1" Sol
0 it 16— o > % .
So that
Lo+380l/2 1 Sol
5,3:—/ |n[°}de=o.
to—s50¢/2 00l [ 8ol

This situation occurs either when all the points form a regular network or are concentrated
on one point to constitute what can be termed as a perfect cluster. These two situations are
related to repulsive and attractive interactions between the points, respectively.

Moreover, note that the probability densiy(¢) may be written as

V(l) = pg,(0).
Then S, becomes

1 o0
5. =1n [W] ~ [ po 0 imig, . ®)

When changing unit length (scale change)anddof vary in opposite ways, so thasyl
keeps a constant value. Given ttfathas to be invariant for such a change, it ensures that
the term

F=— /0 P, (0) Inleh, (0)] A @

does not depend on the point densityout only on the way the points are scattered. For a
random arrangement of points

¢, (0) = exp[-pL] so F=1.
When all the edges have the same length §o¢/2 we have

Lo+80L/2 1 1 1
F:—/ In[}dez—ln[]
to—so¢/2 00f [ pdol pdol
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Therefore, for a givemw, the minimal F value depends ofy¢. In particularF — —oo for
8o¢ — 0. This limit corresponds to a regulabp mosaic for whichmsT edge lengths are
known with infinite accuracy.

For convenience, the way the points are scattered will be characterized by using a
parametety defined as

y=1-—F. 8

Thusy = 0 for a random arrangement of points and-> oo for a regularib mosaic. The
behaviour ofF or y for intermediate situations is studied in the following section.

4. Study of simulated distributions of points

4.1. Experimental procedure

The points have been distributed along an axis of lerdgtly means of two procedures:

(i) Random distributions have been simulated by using the linear congruent Monte Carlo
method [14].

(ii) Other distributions have been generated from a basic distribution made ap of
points located at regular intervals= L/N (regularib mosaic). This arrangement may be
randomized by giving each point a new position deduced from its previous position using
a Gaussian distribution with a standard deviationoodnd a zero mean. Fora value of
the order of the: value, the uniform random distribution is reached [1]. Thus by using
values from zero ta > a, a set of various distributions can be generated.

For each distribution, the graph connecting all the points in the shortest wayp or
MST is constructed, and from the corresponding edge-length histogram an estimate of the
statistical entropys, is obtained by means of (3).

4.2. Results related to random distributions of points

By using the expression & (¢) given by (5) in (2), we obtain, after performing integration:

Ser=1In [ ¢
r = Y
where the subscript r stands for random, or
[eM
Sg’r == |I’1 _Ni| (9)

by takingsol = L/M andp = N/L into account.

Ten distributions ofN (N = 2000 andN = 6000, respectively) randomly scattered
points have been generated on a segment of lefigtes 1. For each distribution the
statistical entropy has been estimated by means of (3) for diffe¥entalues such as
M/N = 1/e. In figure 1@) we have reported bothSZQ—the arithmetic averages related
to the ten distributionsN = 2000 andN = 6000)—andS,  versusM/N. It can be noted
that experimental results do not depend explicitly on the value€:ahey only depend on
M/N as expected from (9). In the same way we obtain a good agreement befyyesmd
(SZQ except for small (figure 1)) and large (figure 1) values ofM/N.

‘In the first case, the discrepancy may be explained by the fact that small valués of
(a fortiori values of M/N) correspond to large values 8§¢; then the variations of'(¢)
on thesesy! intervals can no longer be considered negligible, as is the case when defining
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Figure 1. Entropy S versusM/N for randomly distributed points. aj Full squares: (S¢,)
arithmetic mean of results obtained by using (3) for ten random distribution¥ ef 2000
points; open squares: same as full squaresvfee 6000. Full curve:S,, given by (9); dotted
curve: (SZ,)thz given by (11). b) Results for small values off//N plotted on an expanded
M/N scale: full squares, open squares and full curve sama)aglifain curve(SZ,)thl given

by (10). €) Results for large values dlif /N plotted on an expanded entropy scale: full curve,
full squares and open squares sameagsdotted curve and broken cur‘(sf_ Pthz given by (11)
for N = 2000 andN = 6000, respectively.

the entropy functionS,. So the probability that an edge lengttbelongs to the class™
may be written as

i8ol
pi = / W (0) de = exp[—p(i — 1)dol] — expl—pisol]
(i—1)dol

By substituting this expression ¢f on the right-hand side of (3), the limN — oo leads
to the theoretical expression fdﬁ -
4 N exp—N/M] N

(Sp.)th1 = M1 exp[—N/M] In|:1 exp|: M:H . (20)
It can be seen from figure WY that (10) fits the experimental results well for small values
of M/N. As values ofM/N increase,(SZ,)thl quickly approachess,,. For example, a
difference of less than 1% is obtained as soom&sV > 1.75. Indeed In[8//N] is the
first-order approximation i/ /N of the right-hand side of (10).

Figures 1é) and €) show that beyond a given value of/N, (Sjr) deviates fromS, .
The discrepancy takes place for larger valuedffN as N is large and increases regularly
with M/N. This behaviour is due to the fact that whéh becomes too large compared
to N, there are no longer enough data in class intervals and the statistics are biased.
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Actually the set of experimental results may be recovered theoretically. Indeed, as the
edge-length events are independent, it is possible to compute the probability étaants
belong to theth interval from the binomial distribution, i.e.

[N, = &) = (Z‘)p,’fu— Nk

where N; is the number of events and

i8ol
ﬁ=/ (e)de.
.

—1)dol
In this case it follows from (3) that the statistical entropy may be written as

M

M k k
54 =— [I(N; =k)— In| — |. 11
(S Dz ;; ( )Ntn[NJ (11)

(SZ,)thz values computed foN = 2000 andN = 6000 are reported in figure dY and €).
A very good agreement witkﬂzr) (better than 0.05%) is observed.

We notice that(SZr)thz represents the expected value of the experimental statistical
entropy whiIe(Sz{r)thl may be considered as the entropy related to the expected value of
the different random variables associated with= N; /M.

The values of(S{ D1, (S¢ Dz, S¢, and S, are in good agreement for values &ff/ N
such that

M
< - <BWN
A N (N)
where A and B are values ofM /N which depend on the accuracy chosen Sﬁ; when
compared withS, . B is dependent oV while A is not.

4.3. Results related to non-random arrangements of points

Such distributions have been generated on a segment of léngthl, from the procedure
described in section 4.1. For the sake of convenience weanetera whereq is a positive
dimensionless variable and= L/N. For a given value oM/N, it is observed, as far as
a < 1, that the statistical entropy computed by means of (3), and henceforth d@jgted
is always less than the one corresponding to the random distributions of points.

Figure 2@) shows, for different values of, the arithmetic average value{§g{a)
calculated over four distributions and for two populatios £ 2000 andN = 6000).
Computations have been made by using MpN value of 25 in (3). It can be noted
that S;{a increases regularly witle and approaches ths,, value related to a random
distribution, i.e. In[@7/N], whena > 1. Notice also thalSZa does not depend explicitly
on N. It depends only on value of//N. The behaviour ofS{ , with « may be justified
as follows.

Let A and B be two points on the-axis such asAB = at, wherei = the unit vector
of the x axis, and A and B the new positions of the previous points after randomization
such thatA’ B’ = ut whereu may be> 0, < 0 or = 0. Figure 3 illustrates two of several
situations that may occur. Denote andx, the components oA A’ and BB’, respectively,
and putz

I=U—ad=X2— X1.
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Figure 2. Entropy S versusa for non-random distributions of pointsa) Full squares:(SZa>
arithmetic mean of results obtained by using (3) for four distribution¥y e 2000 points; open
squares: same as full squares f6r= 6000; full curve: S, , given by (13); dotted curvesS; o
given by (15); broken curveS; , given by (16). b) Initial portion of S plotted on an expanded

a scale and an expanded entropy scale; full squares, open squares and full curve s@me as (

A
|

u<0

Figure 3. Two of various situations that may occur when delocalizing two points A and B of a
regularip mosaic. A and B are the new positions of the previous points after randomization.

x1 andx; are the shift related to point A and point B, respectively, and may be associated
with two random variables\; and X,. They are characterized by a Gaussian density
probability

P (x) =

1 ox x?
wov2r L 202
wherex stands forx; or x».

Given thatX; and X, are independent, the density probability related to the random
variableZ = X, — X, is then given by [15]:

o= exp[- ©

i) = 2w\/T P 402 |

The variable change = u — a and the fact that edge lengthsare such that = u if u > 0
and?¢ = —u if u <0, lead to

1 (4 2 0 —a)?
0= 5 <exp[—(:a:)} + exp[—(%;’)]) (12)

which represents the edge-length distribution function when a perturbation with a standard
deviation ofw is applied to the basic distribution.
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Inserting (12) into (2) provides
M
See =1In [2«/enNa] +T(p,a) (13)

with

e o I = [ e R

The full curve in figure 24) representsS,, given by (13). A good fit £ 1%) between
experimental and theoretical results is obtained fOBG< o < 0.42 approximately. Beyond

this range (figures 2() and )) discrepancies appear. Actually whens small enough, so

that randomization does not much modify the position of the two points considered in the
basic distribution, the edge-length distribution function is merely

_p p*( —a)®
W, (0) = N exp[—M] (14)
Then
Sie =1In [2@%05] . (15)

Equation (15) and experimental results are in good agreement (better than 1%) for
0.08 < « < 0.31. In thisa rangeT (p, @) is negligible. The discrepancy between theory
and experiment, whea < 0.08, results from the fact that the chosen value\tfN (here

25), is no longer large enough. Faer> 0.42 the explanation may be the following. The
model used to establish (13) involves only two neighbouring points in the basic distribution.
Whena becomes relatively high, other points than those considered in the model come in
between the two initial points, so that the Euclidean distance between these does not define
an MST edge length any longer. In other words, equation (12) does not represent the real
edge-length distribution function. It follows that (13) is not very adequate to describe the
experimental results. Actually more than two points in the basic distribution should have
been considered. But in this case, the formulation of the problem rapidly becomes very
complicated. However, it is possible to obtain a good fitdfiar 0.42 by weightingT (p, «).

We found that the expression

See =In [2@%&] +1.7/aT (p, @) (16)

fitted the experimental results quite well (see figura)R(

From equations (9), (13), (15) and (16), it can be deduced that the experimental entropy
S¢ (8¢ now refers toSy andSy ,, both of which are evaluated from (3) by using adequate
values ofM/N) is well described by the general expression

M
S¢ =1In [N} +G(p,a). (17)
The determination of the adequate values\bfN is discussed in section 4.5.

4.4. Parameter of order

The computation o& (p, «) from (17) for various simulated arrangements of points, shows
that the ternG does not depend gmbut only one, i.e. on the way the points are distributed.
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T T T T T T ¥ ¥ T
=]
2+ -
e = -4
?—
1 - . . .
a Figure 4. Parametery versusa for various simulated
R « | distributions of points. y has been evaluated by using
a adequate values a¥//N for each distribution following
0 T R . the procedure proposed at the end of section 4.5. Full
0.0 0.2 0.4 0.6 0.8 1. squares: various simulated distributions with= 2000;
o open squares: same as full squaresNo& 6000.

This result is in good agreement with the theoretical prediction given by (6) which may
also be written as

M

Moreover, we find that is a monotonically increasing function af that may therefore be
used to quantitatively characterize order (or disorder) in the distributions of points. Actually
it seems more convenient, for such a characterization, to use the parameter ¢f dedieed

by (8). Figure 4 showsy = 1 — G(«) for different distributions of points. Also note that

M
y =In [EN} — S8 =8, —s¢. (18)

Thus, given a distribution oV points, y measures the difference between the entropy
function related toN randomly scattered points and the entropy function related to the
actual distribution ofN points.

4.5. Determination of adequate value Mf when evaluating entropy functioﬁ’f

The purpose is to determine th value so that the difference = S, — S¢ will be minimal.
Let us first consider a random distribution &f points. The standard deviation related to
edge lengths and deduced from (5pis= 1/N by taking L = 1. Theoretical values ob

for such a distribution are given b9y = S — (SZr)thz. The variations ofDy,, versusMo,

for N = 2000 are shown in figure 5. On the same figure are also reported some values of
Dy = S;r — Sgr related to a simulated random distributioN = 2000, and some values
of Dy = Sp.0 — SZ(X corresponding to a weakly perturbed mosgic= 2000 characterized
by the edge-length distribution functiol, (¢) (equation (14)). These results show that, for
a givenN, D does not depend on the way the points are scattered, and tisatvell fitted

by Dy,. The adequate value dffo or M is obtained forDy, = 0. It is then possible to
compute the adequate value Mis for variousN (figure 6) and in particular to put forward
the following analytical approach:

co+ % N +esN2+eaNIn[N]  for N e (100, 10000 (19)

with ¢o = 1.184,¢1 = —29.4, ¢, = 3.463x 1073, c3 = 2.216x 1078, ¢, = —3.648x 1074
Eventually, the practical procedure to evaluate the parameter of grdelated to an
arrangement ofV points scattered along a segment of lenftis as follows:
(i) Construct themsT from the set of points and determine the edge lengths. Divide the
edge-length values b¥ in order to reduce the study to a segment of lengtks 1.
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8 T T T
4 - o
/'i/"’u"’),
2 ok =
a8 L | Figure 5. D = S, — 59, versusMa, for distributions
of N = 2000 points. Full curve:Dy = S¢,r — (5§ tha.
-4 7] Full squares: Dy = S;r — SZ, for a simulated random
-4 E distribution; open squared), = Sp o — S;ia for a mosaic
_8 ) ) . perturbed withe = 0.2. For both full and open squares the
o 10 20  value ofo taken into account is the real standard deviation
Mo deduced from the simulated distributions.
5
/./‘
4 e
/.
3 F »
g |
2t/
*
/
1 »
0 ) )
Figure 6. Adequate values oMo versusN. Full circles:
0 5 3 computed adequate values dfo; full curve: analytical
N(10°) approach given by (19).

(i) Compute the real standard deviatienrelated to the edge lengths.
(iii) Use the adequate value @f deduced from (19) to comput® by means of (3).
(iv) Lastly deducey from (18).

5. Conclusion

In this paper, we have proposed a new paramgtéor quantizing the degree of order in

a 1D distributions of points. This parameter involves an entropy function related to the edge
lengths of themsT constructed from the set of points. Theoretical predictions have been
confirmed by investigating the simulated distributions of points, i.e. both random and non-
random distributions obtained by perturbing a reguamosaic using a Gaussian process.
Besides this, a method which is particularly easy to implement and computationally efficient
has been proposed for evaluatipgn all situations, i.e. simulated distributions as well as
distributions resulting from experiments. This parameter should turn out to be very useful
in various fields of physics, biology and medicine. Eventually this study may be extended
to the 2D distributions of points. Such an approach is being developed.
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